Mostrando entradas con la etiqueta encalado de suelos. Mostrar todas las entradas
Mostrando entradas con la etiqueta encalado de suelos. Mostrar todas las entradas

4 de diciembre de 2015

Manejo y corrección de la acidez de los suelos

Publicado el: 

¿Qué es la acidez del suelo?
En la solución del suelo, las altas concentraciones de Aluminio (Al3+) e Hidrógeno activo (H+) dan lugar a la acidez del suelo. El pH (potencial de hidrógeno) es la medida del grado de acidez o alcalinidad de un suelo. Un pH de 7.0 indica neutralidad, pero a medida que este valor disminuye el suelo se vuelve más ácido, de manera que, un pH de 6.0 es diez veces más ácido que un pH de 7.0. El significado práctico del pH en términos de acidez del suelo, es que afecta significativamente la disponibilidad y la asimilación de nutrientes, y ejerce una fuerte influencia sobre la estructura del suelo.
 ¿Cómo se genera?
Remoción de nutrientes por los cultivos. Los cultivos, sobre todo los de alto rendimiento pueden ocasionar acidez al suelo mediante la absorción de cationes básicos (Ca, Mg y K). La planta, al absorber cationes libera hidrógeno para mantener el equilibrio en su interior, el cual genera acidez. Por ejemplo un cultivo de maíz puede remover hasta 60 kg de Mg ha-1. 
Elevada precipitación. El exceso de lluvias ocasiona la lixiviación o lavado de cationes intercambiables (Ca, Mg, K y Na). El potasio y sodio son los dos cationes que se lixivian más fácilmente y dan lugar a ser sustituidos por el hidrógeno y el aluminio. 
Descomposición de la materia orgánica. Al descomponerse la materia orgánica por la acción de los microorganismos del suelo, se libera dióxido de carbono que se transforma fácilmente en bicarbonato, esta reacción libera hidrógeno que acidifica el suelo.
Uso de fertilizantes nitrogenados de reacción ácida. Los fertilizantes nitrogenados que contienen o forman amonio (NH4+) incrementan la acidez del suelo. El sulfato de amonio, nitrato de amonio y la urea son los fertilizantes típicos que generan esta reacción. Al aplicar estos fertilizantes al suelo, el amonio (NH4+) se transforma en nitrato (NO3-) gracias a la acción biológica y libera hidrógeno que acidifica el suelo. Esta reacción es necesaria y se da de manera natural, ya que la mayor parte del nitrógeno que absorbe la planta es en forma de nitrato. Por cada molécula de NH4 que se transforma a NO3, se liberan dos moléculas de H+.
Aluminio intercambiable. La presencia de aluminio (Al3+) en la solución del suelo induce el desarrollo de la acidez del suelo. El aluminio que se desplaza de las arcillas por otros cationes reacciona con el agua y libera hidrógenos. Este incremento en la acidez promueve la presencia de más aluminio disponible para reaccionar nuevamente. Tan solo una concentración de 2-5 ppm de aluminio en la solución de suelo es tóxica para cultivos sensibles, y más de 5 ppm ya es tóxico para cultivos tolerantes.
¿Qué efectos causa?
La producción de cultivos en suelos ácidos impide conseguir altos potenciales de rendimiento y buena calidad de las cosechas (Cuadro 2), por ejemplo, en muchas regiones de México y Centroamérica la productividad del maíz ha disminuido por efecto de la acidez. En estas condiciones del suelo, la solubilidad del aluminio (Al), hierro (Fe) y manganeso (Mn) es elevada y sus concentraciones aumentan hasta llegar a niveles muy tóxicos para las plantas. Por su parte, el aluminio también impide la absorción de calcio y magnesio. Finalmente, las raíces se acortan y engrosan, impidiendo así la absorción de agua y nutrimentos, en particular, el abasto de fosforo (P) y molibdeno (Mo) se ve seriamente comprometido. Sin embargo, el efecto más grave es sobre el proceso de fijación biológica de nitrógeno en las leguminosas.
¿Dónde se presenta?
En México, los suelos ácidos se encentran distribuidos en las regiones tropicales y en los bosques templados. Se sabe que cubren una superficie cercana a los 14 millones de ha, donde Veracruz, Tabasco, Chiapas y Campeche son los estados que concentran la mayor cantidad de suelos con estas características. Por ejemplo, una de las regiones más afectadas por la acidez del suelo es la Frailesca, en el Estado de Chiapas. Sin embargo en estados como Jalisco, Nayarit y Colima, también hay muchas zonas con suelos ácidos.
¿Qué pH prefieren los cultivos?
Los cultivos tienen un rango de pH en el cual se desarrollan adecuadamente, pero a medida que se sale de estos valores sus rendimientos se ven afectados.
¿Cómo se mide?
Uno de los principales objetivos de análisis de suelos es conocer el pH del mismo. A partir del conocimiento de este parámetro se determina si hay que adicionar mejoradores de suelo que disminuyan este problema. El uso del potenciómetro es el método más preciso y utilizado para esta determinación, puede hacerse en laboratorio, aunque actualmente ya existen equipos portátiles que miden el pH con tanta precisión como los de laboratorio. El valor de pH del suelo se determina al poner en contacto una suspensión suelo-agua destilada (en una relación 1:2 o 1:1), pero también se suele medir usando CaCl2 0.01M o KCl 1 N en lugar de agua. La determinación de pH en CaCl2 es normalmente 0.5 a 0.8 más baja que la determinada usado agua solamente. Cuando la medición de pH se realiza en una solución de KCl 1 N, la diferencia en pH con respecto al medido en agua pude llegar a ser más de una unidad más baja que en agua. Por esta razón, cuando se reporta el pH del suelo, siempre se debe indicar el procedimiento de determinación y la relación suelo:agua o solución empleada, para poder interpretar el dato correctamente. En lo sucesivo cuando se especifique el pH del suelo, nos referimos al medido en suelo:agua (1:2), dado que es la que se usa mayormente.
¿Cómo se controla?
Aunque en la actualidad se disponga de genotipos tolerantes a la acidez, la solución más acertada, técnica y económicamente, es la aplicación de materiales básicos (enmiendas calcáreas) que neutralicen la acidez. Esta práctica se conoce como encalado y los materiales que la hacen posible son principalmente carbonatos, óxidos, hidróxidos y silicatos de calcio y/o magnesio, todos con diferente capacidad de neutralización.
¿Qué productos se deben de usar?
El material más utilizado para el encalado de suelos es la cal agrícola o calcita, la cual contiene principalmente carbonato de calcio (CaCO3). El óxido de calcio (CaO) conocido como cal viva y el hidróxido de calcio [Ca (OH)2] conocido como cal hidratada, son dos fuentes de rápida reacción en el su suelo, pero muy difíciles y desagradables de manejar, por lo que no se recomienda su uso. Otras fuentes como la dolomita (CaCO3. MgCO3) tienen la ventaja de aportar magnesio. La calidad de estos materiales se establece principalmente en base a los siguientes términos:
Pureza del material. La capacidad para neutralizar la acidez depende de la pureza y composición química de la fuente. Para conocer la pureza se utiliza el criterio del equivalente químico (EQ) que es la medida del poder de neutralización de una cal en particular. Su capacidad para neutralizar se compara con el poder de neutralización del CaCO3 químicamente puro, al cual se le asigna un valor de 100 %. Los materiales con menos de 80 % de EQ (32 % de Ca) son de baja calidad. 
Tamaño de las partículas. La velocidad de reacción de los materiales se determina por el tamaño de sus partículas. A menor tamaño de partícula hay mayor superficie de contacto con el suelo (mayor superficie específica), por lo tanto mayor rapidez de reacción. Poder relativo de neutralización total (PRNT). Es la evaluación conjunta de la pureza y finura de los materiales. Este índice de eficiencia se obtiene multiplicando la eficiencia granulométrica por el equivalente químico y este producto se divide entre 100.  
 ¿Qué dosis de encalado aplicar al suelo?
Los suelos difieren en su capacidad de amortiguamiento (oponerse a un cambio de pH). Normalmente los suelos con mayor contenido de materia orgánica y arcilla tienen mayor capacidad de amortiguamiento, por lo tanto requieren mayor cantidad de enmienda para un cambio de pH. Esta característica de los suelos depende de su capacidad de intercambio catiónico (CIC). Para saber los requerimientos de cal se determina la capacidad de amortiguamiento del suelo mediante una determinación llamada pH Buffer. A través de esta determinación Se ha calibrado las dosis de encalado, ajustadas en función del valor de la CIC. El dato de dosis de encalado del cuadro 6 debe de ser ajustado en base a la CIC del suelo, según los valores que se indican en el cuadro 7. 
¿Cómo y cuándo aplicar la cal?
La cal se mueve muy poco en el suelo, de manera que sus efectos benéficos ocurren solamente en la zona de aplicación. La efectividad de la cal se logra mezclando perfectamente el material en los primeros 15 – 20 cm de suelo utilizando implementos como la rastra. La incorporación del material asegura mayor eficiencia, sobre todo en suelos de textura media a pesada. Para cultivos ya establecidos o pastos, y cultivos perennes, la incorporación no es posible y la única forma de aplicación es superficial o con escasa incorporación. En cultivos como café, plátano y palma aceitera, la aplicación se realiza en banda o en zona de fertilización. 
Para que la reacción química se manifieste es necesario que haya humedad en el suelo, de tal manera que el encalado se lleva a cabo unos dos meses antes de la temporada de lluvias para mayor efectividad.
 ¿Con que frecuencia encalar?
Conocer el ritmo de acidificación o alcalinización a través del estudio del suelo nos permite definir la frecuencia, tipo y cantidad de cal a aplicar. Lamentablemente no es muy certero hacer generalizaciones respecto a la frecuencia de encalado, ya que son muchos los factores involucrados, tales como la capacidad de amortiguamiento del suelo, la precipitación pluvial, el uso de fertilizantes amoniacales, y la incorporación de materia orgánica.
Uso del yeso agrícola como enmienda
El yeso agrícola (sulfato de calcio dihidratado) también se emplea como enmienda en suelos ácidos, pero únicamente como un mejorador del ambiente radicular, ya que por ser una sal neutra su aplicación no cambia la acidez del suelo (prácticamente no hay cambio en el pH). Es un material que aporta calcio y azufre, disminuye la actividad del aluminio en el suelo, reduce la saturación de aluminio en el complejo de intercambio en el suelo, favorece el crecimiento y una mayor exploración de raíces, y crea una mejor estructura del suelo.
FUENTE: ENGORMIX
 
Autor/es
 
Guanajuato, México
Ing. Agrónomo
 
Guanajuato, México

15 de septiembre de 2012

Acidificación de Suelos


pH Edáfico y rendimiento de cultivos estivales en la Región Pampeana

Publicado el: 11/09/2012
Fuente: Engormix
Autor: Guillermina Perez Habiaga (EEA ANGUIL, CONICET – INTA); Daniel Eduardo Buschiazzo (INTA ANGUIL, Facultad de Agronomía de la Universidad Nacional de La Pampa y CONICET); y Martín Díaz Zorita (CONICET-INBA y Novozymes BioAg S.A.). Argentina
Resumen

La acidificación de suelos aparenta ser un proceso de cierta magnitud en la región Pampeana, posiblemente por efecto del mayor uso de fertilizantes de reacción ácida en sistemas agrícolas que involucran baja reposición de bases. Poco se sabe acerca de los efectos que este proceso tiene sobre el rendimiento de los cultivos en suelos de esta región. Por esta razón, el objetivo de este trabajo fue determinar el efecto del pH del suelo sobre la producción de materia seca y la longitud de raíces de soja (Glycine max) y de maíz (Zea mays), dos de los cultivos más frecuentes en la región. Se realizó un ensayo en invernáculo utilizando tres suelos representativos de la región pampeana: un Argiudol Típico, un Hapludol Típico y un Haplustol Entico. Cada suelo fue acidificado artificialmente, agregando cantidades de HCl suficientes como para producir tres niveles de acidificación: a) situación original (T), b) baja acidificación (AB, pH = 5) y c) media acidificación (AM, pH = 4). Los resultados indican que el pH del suelo afectó la producción de biomasa aérea de ambos cultivos, pero la soja fue más sensible. El crecimiento de raíces resultó afectado en forma similar en los dos cultivos. Se puede concluir que la acidificación afecta en forma similar el crecimiento aéreo y radicular del maíz, pero inhibe más el crecimiento aéreo que el radicular de la soja. Posiblemente, esto se produce por una menor nodulación de las raíces de este cultivo, lo que disminuiría la nutrición nitrogenada de la leguminosa.
PALABRAS CLAVE  Acidificación del suelo; maíz-soja; Molisoles.

INTRODUCCIÓN
La agricultura intensiva, extractiva y con baja reposición de bases, combinada con el incremento del uso defertilizantes de reacción ácida, ha agudizado y acelerado la manifestación del fenómeno de acidificación de suelos (Sadzawka & Campillo, 1993, Iturri et al., 2010). La acidificación del suelo, en un amplio sentido, puede considerarse como la sumatoria de los procesos naturales (edáficos, climáticos y biológicos) y antropogénicos que disminuyen el pH de un suelo.

Los fertilizantes más usados en la región pampeana son los nitrogenados, en particular, los amoniacales, que afectan tanto el pH del suelo como la pérdida de cationes básicos. Parte del NH4+ liberado por los fertilizantes amoniacales, es absorbido por las plantas, el resto se transforma en NO3- por la oxidación biológica durante la nitrificación. Como resultado de este proceso biológico se liberan iones H+ que acidifican el suelo, que son los responsables de la disminución del pH que se observa luego del uso continuado de fertilizantes amoniacales (Peyrelongue y Sadzawka, 1993). Trabajos realizados en esta región mencionan que 10 % de los lotes agrícolas presentan pHs menores a 5,8;  25 % poseen pHs entre 5,8 y 6,2 y 30 % entre 6,2 y 6,5 (Melgar et al., 2003). Particularmente, los suelos de las zonas húmedas tienen una tendencia natural a incrementar su acidez (variación frecuente de pH 5 a 7) debido a que a los procesos de lixiviación de bases se adicionan la extracción por los cultivos y en algunos casos la erosión (Boschetti et al., 2003). Sin embargo, Parisi (1989) señala que los suelos de regiones húmedas presentan una capacidad amortiguadora mas elevada que aquellos de regiones semiáridas, debido a su mayor capacidad de intercambio catiónico y grado de saturación de bases.

Entre las consecuencias más importantes de la acidificación de los suelos se encuentran la pérdida de cationes básicos (magnesio, potasio y sodio) y la acumulación de cationes ácidos (hidrogeno, aluminio y manganeso, entre otros). La acidez de los suelos limita el crecimiento de las plantas debido a una combinación de factores que incluyen la toxicidad del aluminio, hierro, hidrógeno y manganeso y la deficiencia de nutrientes esenciales, especialmente calcio, magnesio, fósforo y molibdeno. El principal efecto de la disminución del pH edáfico sobre los cultivos es la restricción del desarrollo radicular por la cual las raíces reducen el volumen de suelo que pueden explorar y se tornan ineficientes para absorber nutrientes y agua, generando así deficiencias nutricionales en los cultivos. En algunos casos la acidificación también inhibe los procesos microbianos que suministran nutrientes a las plantas (Sadzawka y Campillo, 1993).

Distintas especies y variedades vegetales muestran diferente susceptibilidad frente a distintos niveles de pH. Así, por ejemplo, las leguminosas que reciben nitrógeno desde la fijación simbiótica son más sensibles que las que reciben nitrógeno inorgánico por fertilización (Gallardo y Borie, 1999). Por otra parte, en el caso de especies gramíneas se ha estudiado que la reducción de la división celular de la raíz, y por consiguiente su crecimiento, es el proceso fisiológico que primero se afecta a bajo valores de pH.

Teniendo en cuenta los antecedentes citados anteriormente, el objetivo de este trabajo fue determinar el efecto del pH del suelo sobre la producción de materia seca y la longitud de raíces de soja (Glycine max) y maíz (Zea mays), dos de los cultivos más frecuentes en la región, en suelos representativos de la región pampeana, bajo condiciones hídricas no limitantes.
MATERIALES Y MÉTODOS
Para desarrollar este trabajo se utilizaron tres suelos representativos de tres ambientes climática y edáficamente diferentes de la región pampeana: un Haplustol Entico de la región semiárida, un Hapludol Típico de la región subhúmeda y un Argiudol Típico de la región húmeda. Se extrajeron muestras de los horizontes A de cada suelo y se desarrollaron ensayos en macetas de 5 L de capacidad en invernáculo. En un diseño completamente aleatorizado y con nueve repeticiones, se implementaron los siguientes tratamientos: a) Testigo (T): la situación actual de cada suelo, b) Nivel bajo de acidificación (AB): pH 4, y c) Nivel medio de acidificación (AM) pH 5. Los pH actuales simulados (relación suelo:agua 1:2.5) se alcanzaron agregando las cantidades necesarias de HCl al 20 % en cada caso (Tabla 1).
En cada tratamiento se sembraron maíz y soja, a razón de 2 plantas maceta-1. Durante el ensayo, los suelos se mantuvieron a 70 % de la capacidad de campo mediante riego con agua destilada. El pH del agua destilada para riego se midió diariamente para evitar el aporte de protones. Estos valores
oscilaron entre 6,5 y 7,2. Los cultivos se desarrollaron hasta lograr 6 hojas expandidas en el tratamiento testigo.
A la cosecha, se separó la parte aérea de la parte radical. La parte aérea, previamente pesada en fresco, se colocó en estufa hasta peso constante y se pesó luego el peso seco (MS). Las raíces se limpiaron con agua destilada y se midió su longitud.
Se tomaron muestras de suelo de cada maceta, se secaron al aire, se tamizaron por 2 mm y se les determinó pH actual (relación suelo:agua 1:2,5) y pH potencial (relación 1:2 en solución de CaCl2), la medición se realizó con un termopeachímetro digital Altronix (TPXIII).
La relación entre el pH y los componentes de rendimiento se analizaron por medio de regresiones lineales simples. Las rectas fueron comparadas mediante ANCOVA.

RESULTADOS Y DISCUSIÓN
La figura 1 muestra que la producción de materia seca de biomasa aérea (MS) de maíz fue altamente dependiente del valor de pH en todos los suelos (p < 0,01). No obstante, la mejor explicación de la variación de MS aérea de maíz se produjo en el Argiudol Típico (R2 = 0,88), lo que indica que el crecimiento de este cultivo es sensible a los efectos de pH aún en suelos con alta capacidad “buffer”. Relaciones similares fueron encontradas para soja, la que resultó también altamente sensible al pH del suelo en los 3 sitios de estudio (p ≤ 0,01). La mejor explicación de la variación del rendimiento de MS de este cultivo se produjo en el Haplustol Entico (R2 = 0,97), el suelo con menor poder amortiguador. Frente a cambios en los valores de pH, la soja fue más sensible que maíz, lo que queda de manifiesto por la mayor pendiente de la relación entre rendimiento de MS y pH, en los tres suelos.
El rendimiento de MS de ambos cultivos resulto ser más sensible a los cambios de pH en el Argiudol Típico que en los otros dos suelos. Esto queda reflejado por la mayor pendiente de las correlaciones MS vs pH obtenidas en este suelo.
La figura 2 muestra que la longitud de raíces (LR) de ambos cultivos fue altamente condicionada por el pH edáfico en el Argiudol Típico y en el Hapludol Típico (p ≤ 0,01), mientras que en el Haplustol Entico la relación fue solamente significativa (p = 0,05). El crecimiento de la raíz mostró un comportamiento similar para los dos cultivos [pendientes estadísticamente similares de maíz y soja: Argiudol Típico (p > 0,90); Hapludol Típico (p > 0,10) y Haplustol Entico (p > 0,30)] en todos los sitios, lo cual indica que el pH afecta en forma similar el crecimiento radicular de ambos cultivos, en todos los suelos. En ningún caso se detectaron necrosis o crecimientos anómalos de las raíces de ambos cultivos sugiriendo que los efectos negativos de la acidificación de los suelos sobre el crecimiento de las plantas no se explicarían mayormente por la generación de toxicidades.

La mayor incidencia del pH sobre la biomasa aérea que sobre la raíz de soja, indicaría que se afectarían más procesos fisiológicos que regulan el crecimiento de la parte aérea y no tanto el crecimiento radicular. Es conocido que uno de los primeros efectos de la acidificación del suelo se produce sobre la nodulación de las raíces de soja por parte de bacterias fijadoras de N (Gallardo y Borie, 1999). Posiblemente, la mayor incidencia sobre el rendimiento de biomasa de la soja que sobre la de maíz se deba a un suministro limitado de nitrógeno hacia la parte aérea de soja, al inhibirse la fijación biológica.

CONCLUSIONES
Los resultados muestran que, en tres suelos representativos de la región Pampeana (un Argiudol Típico, Hapludol Típicos y un Haplustol Entico), la acidificación posee efectos negativos sobre la producción de biomasa aérea y el crecimiento radicular de soja y de maíz. La producción de biomasa aérea de soja fue negativamente más afectada por los cambios de pH que la de maíz. El crecimiento radicular de ambos cultivos mostró comportamientos similares en todos los suelos: reducciones de su longitud al incrementarse la acidez de los suelos. La producción de biomasa aérea de ambos cultivos resultó más afectada en suelos con mayor capacidad “buffer”, en tanto que el crecimiento radicular lo fue en suelos con menor poder amortiguador. Se puede concluir que la acidificación afecta en forma similar el crecimiento aéreo y radicular del maíz, pero inhibe más el crecimiento aéreo que el radicular de la soja. Posiblemente, debido a la acidificación, se produzca una disminución de la población de Bradyrhizobium japonicum, lo cual inhibe una adecuada nodulación de las raíces y posterior fijación de N.

AGRADECIMIENTOS
Este estudio fue financiado por INTA Anguil y la Facultad de Agronomía de la Universidad Nacional de La Pampa.

BIBLIOGRAFÍA
Boschetti, N.G., Quintero, C. y Lucca, C. 2003. Alta producción en suelos de la cuenca lechera entrerriana. Proyecto Fertilizar. INTA. www.fertilizar.org.ar
Gallardo A., F. y F. Borie B. 1999. Sensibilidad y tolerancia de especies y cultivares a condiciones de acidez. Tests rápidos de diagnóstico. Frontera Agrícola (Chile) 5(1-2): 3-18.
Iturri, L.A., Buschiazzo D.E. y Díaz-Zorita M. 2010. Acidification evidences of no-tilled soils of the central Region of Argentina. Ciencia del Suelo 29(1):13-19.
Melgar, R., Díaz-Zorita, M, y Garcia, F. 2003. Fertilización en soja y trigo-soja: respuesta a la fertilización en la Región Pampeana. Resultados de la red de ensayos del Proyecto Fertilizar –INTA. Campaña 2000/2001 y 2001/2002
Parisi, V. 1980. Biología y Ecología del suelo. Blume Ecología Nº 6, Barcelona
Peyrelongue C, Amelia y Sadzawka R., Angélica. 1993. Importancia del manejo del suelo y tipo de fertilizante en la acidificación de los Trumaos. En: Campillo R., R. (ed.) Acidez de los suelos de la Araucanía. Instituto de Investigaciones Agropecuarias (Chile), Est. Exp. Carillanca (Temuco), Serie Carillanca N°38. p. 31-40
Sadzawka R., A. y R. Campillo R. 1993. Problemática de la acidez de los suelos de la IX Región. I. Génesis y características del proceso. Investigación y Progreso Agropecuario Carillanca 12(3): 3-7.